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Partial sequencing of the bottle gourd genome
reveals markers useful for phylogenetic analysis
and breeding
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Abstract

Background: Bottle gourd [Lagenaria siceraria (Mol.) Standl.] is an important cucurbit crop worldwide.
Archaeological research indicates that bottle gourd was domesticated more than 10,000 years ago, making it one
of the earliest plants cultivated by man. In spite of its widespread importance and long history of cultivation
almost nothing has been known about the genome of this species thus far.

Results: We report here the partial sequencing of bottle gourd genome using the 454 GS-FLX Titanium
sequencing platform. A total of 150,253 sequence reads, which were assembled into 3,994 contigs and 82,522
singletons were generated. The total length of the non-redundant singletons/assemblies is 32 Mb, theoretically
covering ~ 10% of the bottle gourd genome. Functional annotation of the sequences revealed a broad range of
functional types, covering all the three top-level ontologies. Comparison of the gene sequences between bottle
gourd and the model cucurbit cucumber (Cucumis sativus) revealed a 90% sequence similarity on average. Using
the sequence information, 4395 microsatellite-containing sequences were identified and 400 SSR markers were
developed, of which 94% amplified bands of anticipated sizes. Transferability of these markers to four other
cucurbit species showed obvious decline with increasing phylogenetic distance. From analyzing polymorphisms of
a subset of 14 SSR markers assayed on 44 representative China bottle gourd varieties/landraces, a principal
coordinates (PCo) analysis output and a UPGMA-based dendrogram were constructed. Bottle gourd accessions
tended to group by fruit shape rather than geographic origin, although in certain subclades the lines from the
same or close origin did tend to cluster.

Conclusions: This work provides an initial basis for genome characterization, gene isolation and comparative
genomics analysis in bottle gourd. The SSR markers developed would facilitate marker assisted breeding schemes
for efficient introduction of desired traits.

Background
Bottle gourd [Lagenaria siceraria (Mol.) Standl.] (2n =
2x = 22), also known as calabash or opo squash, is a
diploid belonging to the genus Lagenaria of the Cucur-
bitaceae family [1]. Phylogenetically, bottle gourd is
close to many economically important cucurbit species
including cucumber and melon that belong to the genus
of Cucumis, as well as watermelon that belong to the
genus Citrullus. Worldwide, bottle gourd is grown for

its fruit either being harvested young and used as a
vegetable or harvested mature and used as a bottle,
utensil, or pipe. The fresh fruit, which usually has a
light green smooth skin and a white flesh, is frequently
used in many regions of Asia and Africa as either a stir-
fry or soup vegetable ingredient [2]. Another recent uti-
lization of bottle gourd is as rootstocks for watermelon
against soil-borne diseases and low soil temperature
[3,4].
Bottle gourd was one of the first crops to be domesti-

cated. Based on archaeological evidence, bottle gourd is
presumed to have been domesticated in Africa [5,6], and
might have dispersed to the New World by ocean
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currents or by human migration in pre-historic times
[7,8]. Africa is believed to be the centre of genetic diver-
sity for bottle gourd, although wild progenitors of bottle
gourd have not been identified there [6]. Substantial
morphological variation for fruit and seed size, shape,
color and rind hardness exists in the bottle gourd gene
pool [8-10]. Yetisir et al. observed a wide range of mor-
phological variation among Turkish bottle gourd acces-
sions despite the fact that this region is not a center of
origin of the crop [11].
At present, very few molecular genetic/genomic

resources are publically available for bottle gourd. Achi-
gan-Dako et al. measured the genome size of bottle
gourd and showed that the nuclear 2C-value of DNA was
around 0.734 pg, which is estimated to be equal to ~ 334
Mb [12]. In spite of the relatively small genome size of
bottle gourd, there are only dozens of bottle gourd DNA
sequences available in the public DNA database, making
it unfeasible to identify bottle gourd genes or to analyze
their functions. A limited number of anonymous random
amplified polymorphic DNA (RAPD) markers have been
described [10,13], but there has been no locus specific
DNA markers such as microsatellite (SSR), sequence
tagged site (STS) or single nucleotide polymorphism
(SNP) markers available for bottle gourd so far. Also
unclear is the extent of genome conservation/diversifica-
tion between bottle gourd and other important cucurbit
species such as the model cucumber (Cucumis sativus
L.), which serves as the basis for comparative genomic
analysis across cucurbit species.
Microsatellites, or simple sequence repeats (SSRs), are

short repeat motifs usually associated with a high level
of frequency of length polymorphism. With the advan-
tages of being stable, PCR-based and relatively low-cost,
SSR markers are one of the best choices for genetic
research and molecular breeding. SSR markers can be
developed, in case of the availability of large number of
DNA sequences, in silico [14], or experimentally [15].
Traditionally, the experimental approach requires the
construction of a genomic library enriched for repeated
motifs, hybridization and isolation of microsatellite con-
taining clones, sequencing of positive clones and primer
design [16]. Most of these steps, especially the hybridiza-
tion/isolation step, are expensive and time-consuming.
Recent emerging ‘next generation’ sequencing technique,
for instance, the 454 Genome Sequencer FLX (GS-FLX
Titanium) shotgun System (Roche, Penzberg, Germany),
provides a powerful alternative for generating a tremen-
dous number of DNA sequences for genomics study
and marker development. Instead of creating a conven-
tional genomic library enriched for microsatellites, GS-
FLX Titanium system sequences a shotgun library in a
high-throughput manner, producing tens of thousands
of reads around 300-400 bp. By mining the sequence

reads, SSR-containing sequences can be identified. Using
this technology, we partially sequenced the bottle gourd
genome. Through assembling and annotating the
sequence reads, tens of thousands of genes with broad
range of functional types were recognized. Moreover,
hundreds of microsatellite markers were developed
using the sequencing data, which are invaluable in
future marker assisted breeding and phylogeny analysis.
The markers were then applied to a range of bottle
gourd accessions to assess genetic diversity to enable
more efficient parental line selection for breeding pur-
poses and to dissect the genetic factors underlying mor-
phological variations.

Methods
Plant materials
Forty-four accessions representing geographically and
phenotypically different bottle gourd germplasm in
China were used in this study (Figure 1; Table 1). The
bottle gourd accession used for GS-FLX Titanium
sequencing is ‘Hangzhou gourd’, a landrace from south-
ern China. One accession of each of the following four
cucurbits i.e. bitter gourd (Momordica charantia L.),
loofah [Luffa acutangula (L.) Roxb], pumpkin (Cucur-
bita pepo L.) and watermelon [Citrullus lanatus
(Thunb.)] were also used.

DNA extraction
Genomic DNA was extracted from leaves of two-week-
old seedlings using a modified CTAB method [17].

DNA library construction and sequencing
To construct DNA library for GS-FLX Titanium
sequencing, 5 mg of genomic DNA were fragmented
into 300-800 bp by nebulization. Short adaptors were
then ligated to the 3’ and 5’ ends. Emulsion PCR
(emPCR) was carried out at a concentration of 1 copy
per bead in six emulsion oils, to give 43,800 enriched
beads. Amplified fragments were sequenced on 1/4th of
an LR70 plate. The reads from GS-FLX Titanium
sequencing were assembled with the software Newbler
(http://rcc.uga.edu/software/app/newbler_GS_De_No-
vo_Assembler/) under default parameters.

Functional annotation of genes and gene ontology
analysis
Functional annotation of the sequences was performed
by BLAST × search against the NCBI no-redundant (nr)
protein database using the assembled contigs/singletons
as queries. The cut-off value for significance was set as
e-10. A putative gene ontology and functional category
were obtained on the basis of GO Consortium (http://
www.geneontology.org/) by BLAST2GO (http://www.
blast2go.de).
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Alignment of gene sequences between genomes
The cucumber genome sequence was downloaded from
Phytozome (ftp://ftp.jgi-psf.org/pub/JGI_data/phyto-
zome/v6.0/Csativus/). A total of 16,135 bottle gourd
contigs/singletons, which were functionally annotable
under an E-value < e-10 and thus were considered origi-
nated from the gene space of the genome, were com-
pared with the cucumber genome sequence by BLAST
N under an E-value threshold of e-10 in at least 100 bp
overlap. For comparison of the Cryptochrome 1 molecu-
lar clock marker genes and the UDP-glucosyltransferase
genes among species, each gene sequence was download
from Genbank (http://www.ncbi.nlm.nih.gov) under the
accession numbers of AB073546.1 (OsCRY1a, rice),
EF601539.1 (TaCRY1a, wheat), AB498928.1 (GmCRY1,
soybean), FE690583.1 (PvCRY1, common bean) or from
the cucurbit unigene database (http://www.icugi.org/cgi-
bin/ICuGI/EST/home.cgi?organism=melon) under the
accession number of MU45735 (CmCRY1, melon) and
MU59780 (UDP-glucosyltransferase gene, melon), with
the exception of cucumber CRY1 and UDP-glucosyl-
transferase genes, whose sequences were extracted from
the cucumber genome database [18].

Microsatellites mining, primer design and SSR assay
The assembled contigs/singletons sequences were
screened for perfect microsatellites using the software
mreps 2.5 (http://bioinfo.lifl.fr/mreps/) [19]. The soft-
ware Websat (http://wsmartins.net/websat/) was used to

design primers flanking SSRs [20]. Only sequences con-
taining SSRs equal to or longer than 20 bp were used
for primer design. The procedure of SSR assay followed
Xu et al. [14].

Analysis of genetic diversity
The alleles present in each genotype were scored
visually for each SSR locus. Number of alleles and allele
frequency per locus were calculated manually. The com-
puter program PIC_Calc 0.6 (http://www.esnips.com/
doc/9171097b-ac41-424a-9d35-e7d4e540ec9f/Picalc) was
used to measure the polymorphism information content
(PIC) value for each SSR locus under the formula PIC =
1-ΣPij

2, where Pij is the frequency of jth allele of the ith
locus [21]. Calculation of Nei’s genetic distance (DA)
and principal coordinates analysis (PCoA) were per-
formed with NTSYSpc 2.10 [22]. A dendrogram show-
ing relatedness among the 44 bottle gourd accessions
were constructed using the unweighted pair-group
method (UPGMA) based on the information of DA.

Results
Summary of the GS-FLX sequencing data
A ¼ run on the GS-FLX system generated 150,253 reads
that passed the quality filters, giving a total length of
56,368,975 bp. The length of individual reads ranged
from 23 bp to 700 bp, with an average of 375.2 bp. The
majority of the read lengths fell between 350 bp and
500 bp. These sequences then were assembled into
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Figure 1 Distribution of 44 Chinese bottle gourd accessions used in the current study. The solid triangles indicate collection sites of the
materials, and the number following each triangle indicate number of accessions collected from the site.

Xu et al. BMC Genomics 2011, 12:467
http://www.biomedcentral.com/1471-2164/12/467

Page 3 of 10

ftp://ftp.jgi-psf.org/pub/JGI_data/phytozome/v6.0/Csativus/
ftp://ftp.jgi-psf.org/pub/JGI_data/phytozome/v6.0/Csativus/
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB073546.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF601539.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF601539.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FE690583.1
http://www.icugi.org/cgi-bin/ICuGI/EST/home.cgi?organism=melon
http://www.icugi.org/cgi-bin/ICuGI/EST/home.cgi?organism=melon
http://bioinfo.lifl.fr/mreps/
http://wsmartins.net/websat
http://www.esnips.com/doc/9171097b-ac41-424a-9d35-e7d4e540ec9f/Picalc
http://www.esnips.com/doc/9171097b-ac41-424a-9d35-e7d4e540ec9f/Picalc


contigs based on sequence overlaps. After removing 75
long contigs (> 2 kb) that were found from a chloro-
plast/mitochondrial origin, 3,994 contigs ranging from
100 bp to 1,873 bp with an average length of 1236 bp
and 82,522 singletons ranging from 23 bp to 649 bp
with an average length of 362 bp were obtained (Table

2). These non-redundant contigs and singletons taken
together represent ~32 Mb of the nuclear DNA
sequence, covering ~10% of the bottle gourd genome.
The original sequencing data is accessible at the DDBJ
database under the accession number of DRR001005.
The assembled contigs/singletons sequences can be

Table 1 Cultivar or accession, origin, fruit shape class and type of the genotypes assayed for SSR polymorphisms

No. Cultivar or Accession Origin Fruit shape Type

1 Longyan April Gourd Fujian province Round Landrace

2 D3 Fujian province Pyriform Landrace

3 Zhangping Qiye Gourd Fujian province Pyriform Landrace

4 D1 Fujian province Pyriform Landrace

5 Linxia Gourd Gansu province Slender straight Landrace

6 Wudu Gourd Gansu province Slender straight Landrace

7 Early Gourd Guangdong province Slender straight Landrace

8 Yuan Gourd Guizhou province Tubby Landrace

9 Songtao Gourd Guizhou province Pyriform Landrace

10 Taijiang Gourd Guizhou province Tubby Improved cultivar

11 Xincai Gourd Henan province Slender straight Landrace

12 Nanxiu Hubei province Slender straight Improved cultivar

13 Xiaogan Gourd Hubei province Slender straight Landrace

14 Qingxiu Hubei province Slender straight Landrace

15 Zhushan Gourd Hubei province Pyriform Landrace

16 Hanlong Qingyu Hubei province Slender straight Improved cultivar

17 Round Gourd No. 1 Hunan province Round Landrace

18 V103 Hunan province Slender straight Landrace

19 White Gourd Jiangsu province Tubby Landrace

20 Duantong Jiangsu province Tubby Landrace

21 Ganxin Jiangxi province Slender straight Improved cultivar

22 Wheat Gourd Jiangxi province Slender straight Landrace

23 Little Gourd Liaoning province Tubby Landrace

24 Qingzhen Shandong province Slender straight Landrace

25 Puxian Gourd Shanxi province Slender straight Landrace

26 Long Gourd J010 Sichuan province Slender straight Landrace

27 Little Seeded Gourd Sichuan province Slender straight Landrace

28 Jinsheng Tianjin province Tubby Landrace

29 Long Gourd Unknown Slender straight Landrace

30 G65 Unknown Slender straight Landrace

31 G32 Unknown Pyriform Landrace

32 Xinxuan Unknown Tubby Landrace

33 J162 Xinjiang province Slender straight Landrace

34 Yunnan Gourd Yunnan province Pyriform Landrace

35 Yongzhen No.1 Zhejiang province Slender straight Improved cultivar

36 Xiaoshan Garden Gourd Zhejiang province Slender straight Landrace

37 Quanhua Gourd Zhejiang province Slender straight Landrace

38 G63 Zhejiang province Slender straight Landrace

39 Xiaoshan Long Gourd Zhejiang province Slender straight Landrace

40 G61 Zhejiang province Slender straight Landrace

41 G62 Zhejiang province Slender straight Landrace

42 Shaoxing Gourd Zhejiang province Slender straight Landrace

43 Hangzhou Gourd Zhejiang province Slender straight Landrace

44 Anji Gourd Zhejiang province Slender straight Landrace
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downloaded from ftp://60.191.1.9 under the user name
of ‘gourd’ and password of ‘sequence2011’.

Functional annotation of the sequences
BLAST × search against the NCBI GenBank peptide
database performed using the 3,994 sequence assemblies
and 82,522 singletons resulted in 18,033 annotated
sequences under an E-value threshold of e-10. After
removing putative plastid/mitochondrial sequences and
retrotransposon/transposon elements, 16,135 ‘clean’
sequences were maintained. The lengths of the anno-
tated sequences varied from 105 bp to 1,873 bp. Of
these, 11,216 (69%) hit a gene function as hypothetical/
predicted proteins or unknown/unnamed proteins while
4,919 (31%) sequences had known putative gene func-
tion annotations (Additional file 1).
Functional assignments for the 4,919 sequences with

putative gene function annotations covered all three
top-level ontologies i.e. cellular component, biological
process and molecular function. Among those sequences
that fell into the functional classification of molecular
function, the largest categories were binding (40.8%),
followed by catalytic activity (39.1%). In the class of bio-
logical process, cellular processing formed the major
category (22.5%). Cell part (31.4%) is the dominant
group of the cellular component classification (Figure 2).

Conservation of gene sequences between bottle gourd
and cucumber
To estimate the extent of sequence conservation
between the gene spaces of bottle gourd and the model
cucurbit cucumber, we compared 16,135 bottle gourd
contigs/singletons that were assigned a functional anno-
tation with the newly available cucumber genome
sequence. BLAST N result showed that 13,370 bottle
gourd sequences matched the cucumber genome in at
least 100 bp overlap (Additional file 2). As expected,
most of the matched sequences occur in the exon
regions, giving an average sequence identity value of as
high as 90.3%. Six hundred and fourteen bottle gourd
sequences (4.6%) had more than 95% identity with
cucumber, while 1252 sequences (9.4%) showed

relatively low sequence conservation (less than 85%
identity). Notably, we found that the gene Cryprochrome
1 (CRY1), which encodes a blue light receptor ubiqui-
tous throughout the plant kingdom and that is fre-
quently used phylogenic molecular clock marker [23,24],
showed an identity value of as high as 93.5% in the con-
served C-terminus DAS domains between the two spe-
cies, demonstrating that the two species are
phylogenetically very close. Another conserved plant
gene, the UDP-glucosyltransferase gene, showed 85%
sequence identity between bottle gourd and cucumber
and a much higher sequence identity between melon
and cucumber (93%, see discussion below).

Characterization of microsatellites in bottle gourd
A search against the sequenced bottle gourd genome for
microsatellite-containing sequences hit 201 positive con-
tigs and 3815 singletons at the threshold of SSR length
≥ 20 bp, harboring a total of 4395 discrete microsatel-
lites. Of these, dinucleotide and dekanucleotide repeats
are the most abundant, each accounting for ~13% of the
total number. Trinucleotide repeats is also abundant,
while mononucleotide and pentanucleotide repeats are
relatively rare (Table 3). The length of the majority of
the SSRs ranged from 20 to 56 nucleotides, with the
longest up to 244 nucleotides. The number of repeat
units varied between 2 and 122. Of the dominant dinu-
cleotide and dekanucleotide repeats, AT/AT and
TTCTCTCTCT/AGAGAGAGAA are the most frequent
types of motif. AAT/ATT, TTTA/TAAA and AAAA
AT/ATTTTT are the most common tri-, tetra- and
hexa- nucleotide repeats, respectively (Figure 3). Clearly,
AT rich repeats take up the majority of the microsatel-
lites longer than 20 bp in the bottle gourd genome.
Around 32% of the non-redundant microsatellite-con-

taining sequences were suitable for design of flanking
PCR primers. The rest of the microsatellite-containing
sequences were less useful in primer development
because the microsatellites were too close to fragment
ends to enable design of flanking PCR primers. We
designed 400 SSR markers (Additional file 3) from the
contigs/singletons sequences and tested the

Table 2 Length distribution of contigs and singletons

Singletons Contigs

Range of length Counts Percentage (%) Range of length Counts Percentage
(%)

< 200 bp 15,985 19 < 400 bp 907 22

200-299 bp 7860 9 400-699 bp 2428 60

300-399 bp 13295 16 700-999 bp 480 12

400-499 bp 32331 39 1000-1499 bp 157 3

≥ 500 bp 13051 15 ≥ 1500 bp 22 0.6

Overall 82522 100 Overall 3994 100
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amplification of 200 (LSR001-LSR200) of them. Ninety-
four percent of the PCR primers amplified products
with anticipated sizes (data not shown), demonstrating a
high fidelity and efficiency for large scale SSR marker
development by the GS-FLX sequencing approach.

Transferability of the microsatellite markers across
species
To test the usefulness of the newly developed microsa-
tellite markers in other understudied cucurbit species,
we investigated their transferability to four other cucur-
bits, i.e. bitter gourd (Momordica charantia L.), loofah
[Luffa acutangula (L.) Roxb], pumpkin (Cucurbita pepo
L.) and watermelon [Citrullus lanatus (Thunb.)] by
amplification with 200 primer pairs (LSR001-LSR200).
Relatively low cross-species SSR transferability was
observed except that between bottle gourd and

watermelon who are both members of the subtribe
Benincasinae, and, as expected, rate of marker transfer-
ability showed significant decline with increasing phylo-
genetic distance (Table 4). Using genomic sequences
from non-expressed regions may partially account for
the low marker transferability across species.

Genetic diversity of 44 Chinese bottle gourd accessions
as assessed by SSR markers
Fourteen primer pairs that detected polymorphisms in
at least two of the four selected bottle gourd lines, i.e.
‘Long gourd’, ‘Longyan April gourd’, ‘Nanxiu’ and
‘Yongzhen No. 1’ (data not shown) were used to geno-
type 44 entries of Chinese bottle gourd accessions
(Table 1). A total of 51 alleles with two to eight alleles
per locus were detected among the accessions, providing
an average allele number of 3.64 per locus. The overall
polymorphism information content (PIC) value varied
from 0.11 to 0.72 with an average of 0.4 (Table 5).
A two-dimensional principal coordinates analysis

(PCoA) did not detect significant subgrouping among
the 44 lines, while the tendency of certain accessions to
congregate together still can be observed (Figure 4).
This distribution of the cultivars/landraces in general
showed an association with fruit shape rather than geo-
graphic origin. For example, accessions with pyriform
and tubby fruit formed a cluster in the upper right and
upper left corners, respectively, while two round-fruited
accessions clustered in the lower right corner. The rest
of the accessions exhibited a scattered distribution along
the two axes. Consistent with this, the dendrogram con-
structed from UPGMA analysis showed three major
groups, which in general corresponds to the three clus-
ters revealed by PCoA (Figure 5). The smallest group
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Figure 2 Gene ontology (GO) categories of 4919 non-redundant contigs/singletons with a putative functional annotation.

Table 3 Summary of the presence and type of simple
sequence repeats (SSRs) longer than 20 bp

Motif Number Percentage (%) Range of copy number

Mono 69 1.6 20-35

Di 583 13.3 10-122

Tri 471 10.7 7-19

Tetra 190 4.3 5-10

Penta 182 4.1 4-8

Hexa 348 7.9 3-7

Hepta 305 6.9 3-17

Octa 235 5.3 3-6

Ennea 311 7.1 2-14

Deka 585 13.3 2-3

> Deka 1116 25.4 /

Total 4395 100 /
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(group III) consisted of the two lines (No. 1 and 17)
with round fruits. Lines in Group I were all landraces
with a pyriform fruit except for ‘Nanxiu’ (No. 12), which
is a commercial cultivar popular in central China with a
slender straight fruit. Group II, the biggest class, con-
sisted of 25 accessions with a slender straight fruit and
7 tubby-fruited accessions with six of the latter showed
a clustered distribution in the dendrogram (Figure 5).
Even though no strong association was observed

between the subgrouping and geographic origin of these
accessions, cultivars or landraces sharing the same or
close origins still tend to be clustered together in certain
subclades. For instance, all the ten cultivars/landraces
from Zhejiang province, a center of cultivation of bottle
gourd in China were clustered together in group II (Fig-
ure 5).

Discussion
Through partial sequencing of the genome via the 454
GS-FLX Titanium sequencing platform, we were able to
rapidly generate DNA sequence recourses for molecular
marker development and genomic inquiry in bottle
gourd, an ‘orphan crop’ for which few genomic
resources have been developed thus far. Tens of
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Table 4 Transferability of the bottle gourd SSR markers
to four other cucurbits

Species No. successful amplification Transferability (%)

Bitter gourd 8 4

Loofah 38 20

Pumpkin 21 11

Watermelon 76 41

Bottle gourd 188 94

Table 5 Number of alleles and polymorphism information
content of the markers used in genetic diversity analysis

Primer name Repeat type No. of alleles PIC

LSR011 ATT 5 0.579

LSR015 CTT 8 0.715

LSR020 G 3 0.384

LSR030 AT 4 0.227

LSR040 TTC 2 0.112

LSR047 TC 3 0.518

LSR056 CTT 4 0.315

LSR063 ATT 3 0.266

LSR074 TA 6 0.540

LSR077 TC 4 0.401

LSR088 ATA 2 0.369

LSR108 AG 3 0.439

LSR109 GA 2 0.354

LSR112 TTCT 2 0.320

Xu et al. BMC Genomics 2011, 12:467
http://www.biomedcentral.com/1471-2164/12/467

Page 7 of 10



thousands of sequences with putative functional annota-
tion were identified, which will allow primer design or
probe development for gene expression analysis, micro-
array assay, in silico cloning of the genes, as well as
comparative analysis among cucurbits. The availability
of bottle gourd genome sequences will be helpful to get
a better understanding of some bottle gourd or

cucurbits specific traits. For example, the sequences
information will facilitate the identification of genes
responsible for the highly efficient water transport sys-
tem that is characteristic to bottle gourd and other
cucurbits [25], and the hunt for genes related to the bit-
ter taste-causing cucurbitacins biosynthetic pathway in
cucurbits [26,27].
We provided the first insight of genome conservation/

diversification between bottle gourd and the model
cucurbit cucumber. We showed that the extent of gene
space conservation between the two species is as high as
90%, demonstrating a close relationship between bottle
gourd and cucumber. This is consistent with the result
from analyzing the CRY1 molecular clock gene, which
showed a 93% sequence identity between the two spe-
cies in the C-terminus DAS domain. This value is higher
than that between rice (Oryza sativa) and wheat (Triti-
cum estivum) (69.4%), two related Poaceae species, and
even higher than between the warm season legumes
soybean (Glycine max) and common bean (Phaseolus
vulgaris) (88%), indicating again that bottle gourd and
cucumber are phylogenetically very close. However, the
value is lower than that between melon (Cucumis melo)
and cucumber (95%), which is consistent with the cur-
rent phylogeny of cucurbits [28]. Similar results were
obtained from analyzing the UDP-glucosyltransferase
genes, where a much higher level of sequence identity
was observed between melon/cucumber (93%) than
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between bottle gourd/cucumber (82%). Assay of SSR
markers transferability across different cucurbit species
also supported the known phylogeny and demonstrated
that the bottle gourd SSR markers could be selectively
used for watermelon (41% amplification rate), and loo-
fah (20% amplification rate) if necessary, due to their
relatively higher cross-species transferability.
Another direct use of the sequencing information is to

develop large number of microsatellite markers for mar-
ker-assisted breeding. The quick generation of over
150,000 sequence entries that enabled development of
thousands of SSR markers within only 1 week at low
cost is far superior to the traditional, hybridization and
Sanger sequencing based method [15,29] in terms of
time, labor and other costs. The GS-FLX Titanium sys-
tem was chosen because it generates longer sequence
length (~ 400 bp) per read than most other next genera-
tion sequencing systems, which is important for the sub-
sequent design of SSR primers flanking the
microsatellite motifs. We identified 4395 SSRs longer
than 20 bp from the non-redundant 32 Mb bottle gourd
genome sequence, which provides a frequency of 1 SSR
per ~7.3 Kb. This frequency is nearly double the estima-
tion from cucumber (1 SSR per ~14.6 Kb) using 3x
shotgun genome sequencing data [30], and demonstrates
that SSRs could serve as a rich source for marker devel-
opment in bottle gourd. The high frequency of dinu-
cleotide and trinucleotide repeats is consistent with the
situation in most other plant species including the
cucurbits cucumber and watermelon [29-31]; however,
the significantly high portion of dekanucleotide repeats
could be a feature of the bottle gourd genome although
dekanucleotide repeats is also common in other plant
genomes such as cowpea [31]. The AT-rich nature of
the microsatellite motifs is conserved between bottle
gourd and cucumber [30].
A dendrogram established based on SSR genotyping of

44 representative China bottle gourd cultivars/landraces
didn’t detect obvious clustering by geographical location,
which is in agreement with Yetisir et al. in which clus-
tering of bottle gourd accessions from Turkey was based
around fruit morphology much more than on geogra-
phical origin [11]. Founder effects followed by assortive
mating, i.e. the original introduction of only limited
genetic diversity within fruit types, followed by matings
mostly within fruit types, would lead to the patterns of
genetic diversity observed. This is supported by the rela-
tively high genetic similarity observed among the bottle
gourd lines, which varied between 51.2% and 94.3%.
Decker-Walters et al. (2001) characterized 74 landraces/
cultivars from a global sample and revealed that the
lines from diverse origins (Africa, Asia and the New
World) were readily separated [10]. Consistent with the
result from Morimoto et al. (2005), fruit shape was

found a principal component of the variation and is in
general associated with the grouping of the lines based
on molecular markers [8]. Our results indicate that
China bottle gourd germplasm could be divided into
three major groups in terms of fruit shape, i.e. slender
straight, tubby and round, although the variation of fruit
shape is quantitative. Heiser proposed that bottle gourd
plants producing large round fruits are typically native
to tropical West Africa, whereas the long, thin, snake-
like fruits are considered to be of Asian origin [9]. This,
if true, is indicative of a mixed origin of Chinese bottle
gourd germplasm. The presence of the pyriform and
tubby fruit lines, which are considered an intermediate
type, could be indicative of natural or artificial hybridi-
zation between the two ancient cultivar groups. Rela-
tively recent human migration events and recent
germplasm introduction activities may further blur the
patterns of diversity as revealed by the imperfect asso-
ciation between the morphology of the lines and their
grouping.

Conclusions
We report here the generation of 454 GS-FLX Titanium
sequencing data of the bottle gourd genome and its
application to SSR marker discovery and genetic diver-
sity analysis. The sequence information will allow char-
acterization of the bottle gourd genome, facilitate gene
isolation and comparative genomics analysis across spe-
cies. The SSR markers developed will enable marker
assisted breeding of bottle gourd, while the characteriza-
tion of patterns of diversity among representative China
bottle gourd accessions will facilitate the optimal use of
genetic resources for breeding. In the near future, with
more and more genome sequence information of other
cucurbits becoming available [18,32], soon it will be fea-
sible to draw deeper and clearer insights into genome
conservation/diversification among related crop cucurbit
species.

Additional material

Additional file 1: Functional annotation of the contigs/singletons.
The annotation of putative functions of the contigs/singletons with an E-
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Additional file 2: Sequence comparison between bottle gourd and
cucumber. BLAST N result between bottle gourd gene space sequences
and cucumber genome. Highlighted are percentage identity values.

Additional file 3: Bottle gourd SSR markers developed. Sequences
and characteristics of the microsatellite markers developed from bottle
gourd contig/singleton sequences.
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